Correction: Decreasing NF-κB Expression Enhances Odontoblastic Differentiation and Collagen Expression in Dental Pulp Stem Cells Exposed to Inflammatory Cytokines
نویسندگان
چکیده
Inflammatory response in the dental pulp can alter the collagen matrix formation by dental pulp stem cells and lead to a delay or poor healing of the pulp. This inflammatory response is mediated by cytokines, including interleukin-1β and tumor necrosis factor-α. In this study, it is hypothesized that suppressing the actions of these inflammatory cytokines by knocking down the activity of transcription factor Nuclear Factor-κB will lead to dental pulp stem cell differentiation into odontoblasts and the production of collagen. Here, the role of Nuclear Factor-κB signaling and its reduction was examined during odontogenic behavior in the presence of these cytokines. The results showed a significant increase in Nuclear Factor-κB gene expression and p65 protein expression by interleukin-1β and tumor necrosis factor-α. Nuclear Factor-κB activation in the presence of these cytokines decreased significantly in a dose-dependent manner by a Nuclear Factor-κB inhibitor (MG132) and p65 siRNA. Down-regulation of Nuclear Factor-κB activity also enhanced the gene expression of the odontoblastic markers (dentin sialophosphoprotein, Nestin, and alkaline phosphatase) and displayed an odontoblastic cell morphology indicating the promotion of odontogenic differentiation of dental pulp stem cells. Finally, dental pulp stem cells exposed to reduced Nuclear Factor-κB activity resulted in a significant increase in collagen (I)-α1 expression in the presence of these cytokines. In conclusion, a decrease in Nuclear Factor-κB in dental pulp stem cells in the presence of inflammatory cytokines enhanced odontoblastic differentiation and collagen matrix formation.
منابع مشابه
Lipopolysaccharide stimulation improves the odontoblastic differentiation of human dental pulp cells.
Lipopolysaccharide (LPS) is one of the causative agents of pulpitis and previous studies have demonstrated that the LPS stimulation of human aortic valve interstitial cells induces inflammatory mediators and the gene expression of osteogenic factors. Therefore, in the present study, it was hypothesized that LPS affects the odontoblastic differentiation of human dental pulp cells (hDPCs). In ord...
متن کاملIsolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملHuman Dental Pulp Stem Cells via the NF-κB Pathway.
BACKGROUND/AIMS Odontogenic differentiation of human dental pulp stem cells (HDPSCs) is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20) in odontoblastic differentiation of HDPSCs. METHODS HDPSCs were obtained from human third m...
متن کاملسلولهای بنیادین پالپ دندانهای شیری انسان، تاریخچه و انواع روشهای استخراج سلول
Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to introduce the isolating methods for stem cells from human dental pulp and to determine their mesenchymal nature before differentiation. Material and methods: One of the ...
متن کاملβ-Catenin Enhances Odontoblastic Differentiation of Dental Pulp Cells through Activation of Runx2
An intense stimulus can cause death of odontoblasts and initiate odontoblastic differentiation of stem/progenitor cell populations of dental pulp cells (DPCs), which is followed by reparative dentin formation. However, the mechanism of odontoblastic differentiation during reparative dentin formation remains unclear. This study was to determine the role of β-catenin, a key player in tooth develo...
متن کامل